

Instrument Remote Control

Advanced Architectures and Automation Branch (588)

Troy Ames Troy.J.Ames@nasa.gov 301-286-5673

January 24, 2005

Instrument Remote Control

Adaptive framework from science investigator to instrument that provides configuration, control, monitoring, data analysis, and simulation for the complete instrument lifecycle.

What is IRC?

■ Extensible Framework

- Object-oriented collection of packages and components that can be dynamically configured.
- Java Technology used for cross-platform portability
- O XML Technology used to describe custom configurations and instrument interfaces. In many cases no additional coding is needed to interface to new hardware.
- Capability to plug-in new technology to support fault detection, automation, data analysis, etc.
- O Supports distributed architecture
- Reduced cost/time for instrument software development
 - Facilitates prototyping and incremental development
 - Plug-in component technology
 - Scripting
- Increase cross-instrument reuse
 - Framework components reused on several instruments with very little instrument specific code needed.

Current Customers

Instruments

- O HAWC High-resolution Airborne Wideband Camera (U of Chicago, GSFC)
- SAFIRE Submillimeter And Far Infrared Experiment (GSFC)
- FIBRE Fabry-Perot Interferometer Bolometer Research Experiment (GSFC)
- O SHARC Submillimeter High Angular Resolution Camera (Caltech)
- O OASIS Ocean-Atmosphere Sensor Integration System (NOAA, GSFC)

Organizations

- Infrared Astrophysics Branch (685)
- University of Chicago
- Caltech
- Laboratory for Hydrospheric Processes (970)
- Earth Science Technology Office
- Stratospheric Observatory for Infrared Astronomy (SOFIA)
- National Institute of Standards and Technology

OASIS IRC Device Architecture

HAWC IRC Device Architecture

Role of IRC in Instrument Lifecycle

Design/Development

- O Prototype and evaluate design options
- Simulation of subsystems
- O Control and integration of hardware and software

■ Test (Bench test through I&T)

- Control instrument and lab test equipment
- Flexible and dynamic configuration for specific lab environments or tests
- Simulate missing components
- Automate test procedures and analysis

Operations

- Control instrument and environment
- Quick look and post data processing
- Automate operational procedures

Instrument Markup Language

- Extensible Markup Language (XML) dialect to describe instrument characteristics
 - Instrument subsystems
 - O Logical command set
 - Command arguments
 - Includes data types, valid values/ranges, and units
 - Command formats
 - O Logical data streams (e.g., science data, housekeeping, command responses)
 - Data field types
 - Includes data types, valid values/ranges, and units
 - Data formats
 - Communication mechanisms
 - Documentation

IRC Status

- Completing Version 6 of the framework
 - O An extensive redesign and implementation of the framework based on lessons learned
 - O GUI customization via XML
- Transitioning current customers to Version 6
- Extending the library of plug-in components including technologies that will provide new capabilities or increase efficiency of operations.
- Extending the configurability of the framework using XML
- Enhancing the framework based on customer needs

Galactic Center image taken by the SHARC instrument using IRC.

